

Extreme Wildfires in Portugal in a changing climate: Driving weather conditions and air quality impacts

IPMA: **Ilda Novo**, Paulo Pinto, Álvaro Silva, Pedro Silva, Manuel Mendes, João Rio, Miguel Carmo | CESAM-UA: Carlos Borrego, Ana Miranda, Diogo Lopes, Carla Gama, Isilda Menezes, Ana Patrícia Fernandes | ADAI-UC: Domingos Viegas, Daniela Alves, Jorge Raposo, Luís Reis

Associação para o Desenvolvimento da Aerodinâmica Industrial

PMA Português de Mar e da Atmosfera

cesam universidade de aveiro centro de estudos do ambient e do mar

1º Workshop de Projetos de Investigação Científica no âmbito da Prevenção e Combate a Incêndios Florestais

Roadmap

Work in progress under FIRESTORM

- 1. Extreme wildfire definition, data collection and characterization.
- **2.** Weather and climate drivers of extreme fire events and periods.
- **3.** Interaction between mesoscale atmospheric flows and the fires.
- **4.** Smoke emission and dispersion modelling for air quality impact.

1. Extreme fire definition, data collection and characterization

- Portuguese database of wildfire events (1980-2018, ICNF).
- Only events with a burnt area > 1.0 ha (for consistency).
- Thorough data base compilation & correction, e.g.:
 - Elimination of duplicates (equal time, location and burnt area)
 - Adjustment of outlier fire duration based on reports and media.

Database, 1980-2018

Original data		
Number of fires	761.508	100%
Burnt area (ha)	4.691.654	100%
Final data		
Number of fires	189.734	25,8%
Burnt area (ha)	4.614.013	98, 5%

1. Extreme fire definition, data collection and characterization

Extreme Wildfire Events (EWE)

• Individual fires as recorded in the ICNF database.

	Number	Proportion of total burnt area	
EWE ≥ 1.000 ha	684	45 %	
EWE ≥ 5.000 ha	77	20 %	
EWE ≥ 10.000 ha	28	12 %	
EWE ≥ 30.000 ha	5	4 %	

Extreme Wildfire Periods (EWP)

- Sequence of days with the largest burnt areas obtained by statistical segmentation (1980-2018):
 - **53 EWP** with a mean daily burnt area \ge 3.000 ha.
 - Total of **392 days**.
 - **52.1**% of the total burnt area between.

1. Extreme fire definition, data collection and characterization

Extreme Wildfire Events (EWE)

Extreme Wildfire Periods (EWP)

FIRE

Coimbra, February 14, 2020

FIRE

1980 / 2018

2.1 The role of seasonal drought on EWP

- 14 12 Number of EWP 10 8 6 4 2 0 p10-p20 ≤p10 p20-p30 р30-р40 p40-p50 p50-p60 p60-p70 p70-p80 p80-p90 p90-p100
- EWP distribution by the Drought Code (FWI) daily percentile of the first day of the period.
- ECMWF / ERA5 reanalysis data

Burned Area Fraction Exceedance Dates: Annual, Decadal Mean and Period Mean Values, 1980/2018

2.2 Weather types (large-scale circulation) frequencies on EWP

Classification of the direction and vorticity of the geostrophic flow: 26 different WT are obtained, which were reduced to the basic 10 WT. (methodology: Trigo *et al.* 2000)

Jun-Set 1980 / 2018 ECMWF / ERA5 reanalysis data

2.2 Weather types (large-scale circulation) frequencies on EWP

Jun-Set 1980 / 2018 ECMWF / ERA5 reanalysis data

3. Interaction between mesoscale atmospheric flows and the fires

IPMA and ADAI-UC cooperation

Site selection for mobile weather station at the top of the Serra da Lousã (Trevim, Nov. 21, 2019)

3. Interaction between mesoscale atmospheric flows and the fires

3.1 Thermal inversion in the vertical profile in the lower troposphere (Lousã-Estrela system)

AROME forecasts:

- Stable Conditions, with strong inversion
- Warmer and much drier above 800/1000m than in the valleys

3. Interaction between mesoscale atmospheric flows and the fires

3.1 Thermal inversion in the vertical profile in the lower troposphere (Lousã-Estrela system)

- Monitoring and study of Lousã-Estrela mountain system:
 - SW-NE orientation
 - vertical profile more than 1000 meters deep
- 4 portable meteorological stations (implementation in progress), adding to 2 more from IPMA's network.

Place	Entity	Lat.	Lon.	Alt.
Lousã	IPMA	40.14	-8.24	195
Seia	Firestorm	40.46	-7.69	435
Candal	Firestorm	40.08	-8.21	600
Sabugueiro	Firestorm	40.41	-7.67	990
Trevim	Firestorm	40.09	-8.18	1180
Penhas Douradas	IPMA	40.41	-7.57	1380

3. Interaction between mesoscale atmospheric flows and the fires

3.2 Discontinuity surfaces in the lower troposphere: sea breezes, confluence and convergence zones, and gust fronts

CESAM/DAO-UA and IPMA cooperation

The weather radar of Arouca, 1100 m. (photo AGA/Avelino Vieira)

- Characterization of smoke emission from wildfires and their dispersion
- Modelling the spatial and temporal variability of smoke concentrations
- Smoke effects on safety and human health

Air quality during EWE Daily limit value = 50 µg.m⁻³

The Extreme Wildfire Event of CIF Lousã

- Total burned area 54 407 ha
- Duration 18 hours
- Start at 10:15 15/10/2017
- End at 4:00 16/10/2017

Emissions Maps: Metodology

Emissions Maps: Spatial distribution of the PM10 Emissions (CIF Lousã)

PM10 emissions (kg.m⁻²)

Air quality modelling system

Air quality modelling: Preliminary results

2017/10/15 10:00 h

Health effects

Air pollutants can enter a human body through:

Dose-response relationship:

For a given air pollutant describes the association between exposure and the observed response (health effect)

Varies with:

- ✓ Air pollutant
- ✓ individual's sensitivity
- ✓ Health effect

Estimate how different levels of exposure to an air pollutant change the intensity of the health effects

Future work

ADAI-UC, CESAM/DAO-UA and IPMA cooperation

cesam universidade de aveiro centro de estudos do ambiente e do mar

Future work

- Full weather and climate characterization of EWE and EWP at the national level and at NUTS3 level.
- Relationship between cumulative burned area and predicted fine dead fuel moisture content.
- Results from the study of Lousã-Estrela system.
- Diagnosis of discontinuity surfaces associated to EWP.

- Forest fuel and emission maps for the Extreme Wildfire Events of the year 2017.
- Air quality modelling for the EWE.
- Impact assessment on visibility and human health.

Thanks !

Contacts: IPMA: ilda.novo@ipma.pt UA: miranda@ua.pt ADAI: xavier.viegas@dem.uc.pt

